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Motivation

• Richtmyer-Meshkov (RM) instability, or RMI, occurs when a shock wave passes
through a perturbed interface separating two fluids with di�erent densities

• In natural phenomena/engineering applications:
¶ Supernova explosion (SNe)
¶ Inertial confinement fusion (ICF)
¶ Supersonic combustion in scramjet

RMI evolution (Image Credit: B. M. Wilson, R. Mejia-Alvarez and K. P.
Prestridge)

Supernova remnant (Image Credit: NASA/ESA/HEIC and The Hubble Heritage
Team (STScI/AURA))
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Motivation
• A lack of understanding of turbulent mixing induced from RMI, due to:

¶ Only simultaneous measurements of density and velocity fields in 2D 1 2

¶ Direct numerical simulations still too expensive
¶ Methods to save computational cost:

High-order shock-capturing schemes
Adaptive gridding for localized and mobile features (shocks, mixing regions, etc.)

• High-order numerical schemes with adaptive mesh refinement (AMR) still not very
popular for RMI simulations:

¶ Tritschler et al.3 used high-order schemes with uniform grid to study RMI with re-shock
¶ Grinstein and Gowardhan4 used AMR but only second order scheme for RMI simulations
¶ Mcfarland et al.5 also used second order scheme with AMR for inclined interface RMI

1Mohammad Mohaghar et al. “Evaluation of turbulent mixing transition in a shock-driven variable-density flow”. In: Journal of Fluid Mechanics 831 (2017),
pp. 779–825.

2Daniel T Reese et al. “Simultaneous direct measurements of concentration and velocity in the Richtmyer–Meshkov instability”. In: Journal of Fluid

Mechanics 849 (2018), pp. 541–575.
3VK Tritschler et al. “On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface”. In: Journal of Fluid Mechanics 755

(2014), pp. 429–462.
4FF Grinstein, AA Gowardhan, and AJ Wachtor. “Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments”. In: Physics of Fluids

23.3 (2011), p. 034106.
5Jacob A McFarland, Je�rey A Greenough, and Devesh Ranjan. “Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface”.

In: Physical Review E 84.2 (2011), p. 026303.
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Motivation

• Goals of research:
¶ Numerical framework for simulations of RMI and similar types of flows. The framework

combines:
Improved high-order shock-capturing methods to preserve fine-scales better
AMR technique that only applies fine grid cells around localized features

¶ Study the turbulent mixing induced by RMI through simulations:
Variable-density mixing e�ects
E�ects of Reynolds number
Analyze the performance of reduced-order modeling through second-moment closures
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A localized dissipation weighted nonlinear scheme

Outline

1. A localized dissipation nonlinear scheme for shock- and interface-capturing in compressible flows

2. An adaptive mesh refinement framework for multi-species simulations with shock-capturing capability

3. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock

4. Budget of turbulent mass flux and its closure for Richtmyer-Meshkov instability
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A localized dissipation weighted nonlinear scheme

Weighted compact nonlinear schemes (WCNS’s): governing equation

• Consider a scalar conservation law for 1D problem:

ˆu

ˆt
+ ˆf(u)

ˆx
= 0

• Semi-discretize this equation on a grid with N points:

ˆuj

ˆt
+ ˆf(u)

ˆx

----
j

= 0

• Need a discrete approximation of the flux derivative:

ˆf(u)
ˆx

----
j
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A localized dissipation weighted nonlinear scheme

Illustration of methodology of WCNS’s 6 7
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6Xiaogang Deng and Hanxin Zhang. “Developing high-order weighted compact nonlinear schemes”. In: Journal of Computational Physics 165.1 (2000),
pp. 22–44.

7Shuhai Zhang, Shufen Jiang, and Chi-Wang Shu. “Development of nonlinear weighted compact schemes with increasingly higher order accuracy”. In:
Journal of Computational Physics 227.15 (2008), pp. 7294–7321.
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A localized dissipation weighted nonlinear scheme

Illustration of methodology of WCNS’s 6 7
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6Deng and Zhang, “Developing high-order weighted compact nonlinear schemes”.
7Zhang, Jiang, and Shu, “Development of nonlinear weighted compact schemes with increasingly higher order accuracy”.
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A localized dissipation weighted nonlinear scheme
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A localized dissipation weighted nonlinear scheme
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A localized dissipation weighted nonlinear scheme

Left-biased explicit interpolations
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A localized dissipation weighted nonlinear scheme

Nonlinear interpolations
In weighted essentially non-oscillatory (WENO) interpolations, the linear weights dk are
replaced with nonlinear weights Êk for shock-capturing:

EIupwind =
2ÿ

k=0
dupwind

k EIk (5thorder); EIcentral =
3ÿ

k=0
dcentral

k EIk (6thorder)

¿

EInonlinear =
2ÿ

k=0
Êupwind

k EIk /
3ÿ

k=0
Êcentral

k EIk

• Êupwind
k : traditional WENO weights by Jiang and Shu (JS)8 and improved weights (Z)9

• Êcentral
k : CU-M2 weights 10

8Guang-Shan Jiang and Chi-Wang Shu. “E�cient implementation of weighted ENO schemes”. In: Journal of computational physics 126.1 (1996),
pp. 202–228.

9Rafael Borges et al. “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws”. In: Journal of Computational Physics 227.6
(2008), pp. 3191–3211.

10XY Hu and Nikolaus A Adams. “Scale separation for implicit large eddy simulation”. In: Journal of Computational Physics 230.19 (2011), pp. 7240–7249.
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A localized dissipation weighted nonlinear scheme

Locally dissipative (LD) nonlinear weights

• The LD11 nonlinear weights (hybrid weights) are introduced for localized dissipation at
shocks or discontinuities for regularization:

Êk =
I

‡ Êupwind
k + (1 ≠ ‡) Êcentral

k , if R· > –·
RL

Êcentral
k , otherwise

, k = 0, 1, 2, 3

where R· is a relative smoothness indicator. ‡ is a shock sensor.
• Ensure minimal numerical dissipation in smooth regions (central interpolation) and

one-sided interpolation at discontinuities
• Êupwind

k is the Z nonlinear weights and Êcentral
k is improved from CU-M2 nonlinear

weights for localized numerical dissipation

11Man Long Wong and Sanjiva K Lele. “High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible
flows”. In: Journal of Computational Physics 339 (2017), pp. 179–209.
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A localized dissipation weighted nonlinear scheme

Approximate dispersion relation (ADR) technique12

• For linear schemes, analytical dispersion and dissipation characteristics can be obtained
from Fourier analysis

• ADR used to compute the characteristics of the nonlinear schemes numerically:

(a) Dispersion characteristics (b) Dissipation characteristics

12Sergio Pirozzoli. “On the spectral properties of shock-capturing schemes”. In: Journal of Computational Physics 219.2 (2006), pp. 489–497.
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A localized dissipation weighted nonlinear scheme

Numerical tests: 1D shock tube problems
1. Shu-Osher problem13 [200 points]: Mach 3 shock interacting with a sinusoidal density

field

2. Multi-species shock tube14 [100 points]:

13Chi-Wang Shu and Stanley Osher. “E�cient implementation of essentially non-oscillatory shock-capturing schemes”. In: Journal of Computational Physics

77.2 (1988), pp. 439–471.
14Rémi Abgrall and Smadar Karni. “Computations of compressible multifluids”. In: Journal of Computational Physics 169.2 (2001), pp. 594–623.
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A localized dissipation weighted nonlinear scheme

Numerical test: 2D double Mach reflection15

• A Mach 10 shock impinges on the wall,
and a complex shock reflection structure
evolves

• Kelvin-Helmholtz instability along the slip
line is only damped by numerical
dissipation

• The smaller the numerical dissipation,
the more the rolled up vortices along the
slip line

15Phillip Colella and Paul R Woodward. “The piecewise parabolic method (PPM) for gas-dynamical simulations”. In: Journal of computational physics 54.1
(1984), pp. 174–201.
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A localized dissipation weighted nonlinear scheme

Numerical test: 2D double Mach reflection (cont.)
• Density contours [Full domain grid size: 960 ◊ 240]:

(a) WCNS5-JS (b) WCNS5-Z

(c) WCNS6-CU-M2 (d) WCNS6 ≠ LD

• WCNS5-JS and WCNS5-Z
too dissipative to produce
rolled-up vortices along
the slip line

• WCNS6-CU-M2 and
WCNS6-LD can capture
much more fine-scale
vortical structures along
the slip line
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A localized dissipation weighted nonlinear scheme

Numerical test: 3D Taylor-Green vortex

• An essentially incompressible periodic problem
• As time evolves, the inviscid vortex stretches and produces features at smaller scales
• Zero Q-criterion at t = 8 with 643 grid:

(a) WCNS5-JS (b) WCNS5-Z (c) WCNS6-CU-M2 (d) WCNS6 ≠ LD
• Finer features are captured with WCNS6-CU-M2 and WCNS6-LD
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A localized dissipation weighted nonlinear scheme

Numerical test: 3D Taylor-Green vortex (cont.)

(a) Kinetic energy (b) Enstrophy

• WCNS6-LD preserves more KE over
times

• Both WCNS6’s outperform WCNS5’s in
predicting growth of enstrophy

• Both WCNS6’s can better capture
features up to high wavenumber

Spectra of u at t = 5:
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A localized dissipation weighted nonlinear scheme

Summary

• Improved nonlinear interpolation developed for a type of nonlinear schemes for problems
with shocks and material interfaces

• The interpolation adaptively switches between one-sided interpolation around
discontinuities and non-dissipative central interpolation in smooth regions

• The improved scheme WCNS-LD:
¶ robust at shocks and discontinuities through the regularization
¶ good resolution and low dissipation properties that are more suited for vortical features
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An AMR framework

Outline

1. A localized dissipation nonlinear scheme for shock- and interface-capturing in compressible flows

2. An adaptive mesh refinement framework for multi-species simulations with shock-capturing capability

3. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock

4. Budget of turbulent mass flux and its closure for Richtmyer-Meshkov instability
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An AMR framework

Overview of patch-based adaptive mesh refinement (AMR)
• Patch-based AMR1617designed for

uniform structured Cartesian grids
• A hierarchy of nested "patches" of levels

of varying grid resolution
• Multi-time stepping with Runge-Kutta

schemes:

�tl

�xl
= �tl≠1

�xl≠1
= · · · = �t0

�x0

• Requires numerical scheme in conservative form for treatment at coarse-fine AMR grid
boundaries to ensure discrete conservation:

ˆui,j

ˆt
+

‚Fi+ 1
2 ,j ≠ ‚Fi≠ 1

2 ,j

�x
+

‚Gi,j+ 1
2

≠ ‚Gi,j≠ 1
2

�y
= 0

16Marsha J Berger and Phillip Colella. “Local adaptive mesh refinement for shock hydrodynamics”. In: Journal of computational Physics 82.1 (1989),
pp. 64–84.

17Marsha J Berger and Joseph Oliger. “Adaptive mesh refinement for hyperbolic partial di�erential equations”. In: Journal of computational Physics 53.3
(1984), pp. 484–512.
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An AMR framework

Relation between finite di�erence schemes and flux di�erence form18

• For a central finite di�erence scheme (compact or explicit) for flux derivative:

– ‚F Õ
j≠1 + — ‚F Õ

j + – ‚F Õ
j+1 = 1

�x

1
≠a 5

2
Fj≠2 ≠ a2Fj≠ 3
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2
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2
+ a1Fj+ 1

2
+ a 3

2
Fj+1

+a2Fj+ 3
2

+ a 5
2
Fj+2

2

• Can be rewritten into flux di�erence form:

– ‚Fj≠ 1
2

+ — ‚Fj+ 1
2

+ – ‚Fj+ 3
2

= a 5
2
Fj≠1 + a2Fj≠ 1

2
+

1
a 3

2
+ a 5

2
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+
1
a 3

2
+ a 5
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Fj+1 + a2Fj+ 3
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2
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s.t.
‚F Õ

j = 1
�x

1
‚Fj+ 1

2
≠ ‚Fj≠ 1

2

2

18A Subramaniam, ML Wong, and SK Lele. “A High-Order Weighted Compact High Resolution Scheme with Boundary Closures for Compressible Turbulent
Flows with Shocks”. In: arXiv preprint arXiv:1809.05784 (2018).
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An AMR framework

Hydrodynamics Adaptive Mesh Refinement Simulator (HAMeRS)19

In-house flow solver built on parallel SAMRAI library from LLNL to simulate compressible
single-species and multi-species flows with adaptive mesh refinement (AMR) and high-order
shock-capturing methods:

Application Navier- 
StokesEuler

Refinement
Tagger 

Gradient
Tagger

Multiresolution
Tagger

Value 
Tagger

N.-S. Initial
Conditions

N.-S.
Boundary
Conditions

Euler Initial
Conditions

Euler
Boundary
Conditions

Convective Flux 
Scheme 

Diffusive Flux 
Scheme High-Order Shock-

Capturing WCNS Family 

Sixth-Order FD in Non-
Conservative Form 

Sixth-Order FD in
Conservative Form 

Flow Model 

Multi-Species
(Isothermal
and Isobaric
Equilibrium)

Multi-Species
(Isobaric

Equilibrium)
Single- 
Species

Ideal Gas
Equation of

State

Sensors

Numerical
Schemes

Physical
Models

19Man Long Wong. Hydrodynamics Adaptive Mesh Refinement Simulator. https://github.com/mlwong/HAMeRS. 2018.
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An AMR framework

Numerical test: 2D inviscid shock-vortex interaction20

• Isentropic vortex interacts with Mach 1.2 stationary shock
• Distorted vortex produces reflected shocks
• Multiple sound waves generated from reflected shock-vortex

interaction

D

x

y Post-shock Pre-shock

vortex

(xv; yv)
φ
r

D

Sound pressure, (p ≠ pŒ) /
1
flŒc2

Œ

2
, of reference solution with grid resolution 4096 ◊ 4096:

(a) t = 4 (b) t = 8 (c) t = 16
20Osamu Inoue and Yuji Hattori. “Sound generation by shock–vortex interactions”. In: Journal of Fluid Mechanics 380 (1999), pp. 81–116.
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An AMR framework

Numerical test: 2D inviscid shock-vortex interaction (cont.)
Refined regions of AMR simulation with base grid resolution 128 ◊ 128 and 1 : 2 refinement
ratio (green: level 1; red: level 2):

(a) t = 4 (b) t = 8 (c) t = 16
Comparison with 512 ◊ 512 uniform grid simulation:

(a) Global sound pressure (b) Local sound pressure
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An AMR framework

Numerical test: 2D inviscid shock-vortex interaction (cont.)

• Weighted number of
cells:
lmaxÿ

l=0
ÊlNl, Êl = �xlmax

�xl

• In this test problem:

Ê0 = 1/4,

Ê1 = 1/2,

Ê2 = 1

Weighted number of cells of AMR simulation ¥ 30% of number of cells of uniform grid
(262144 cells) simulation at the end
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An AMR framework

Numerical test: 3D viscous shock-bubble interaction

• Mas = 1.68, R = 1.016 mm
• Material interface with characteristic

length scale ‘i = 0.125 mm
• A quadrant of the domain is simulated

Lb

Ls

R

8R

8R

12R

y

x
z

Pre-shock air

Post-shock air

Krypton bubble

• Di�erent grids settings:
Grid Base grid resolution Refinement ratios Finest grid spacing (µm)
A 384 ◊ 128 ◊ 128 1:2, 1:2 7.94
B 768 ◊ 256 ◊ 256 1:2, 1:2 3.97
C 1536 ◊ 512 ◊ 512 1:2, 1:2 1.98

• Gradient sensor on pressure, multiresolution sensor on density, and sensor on mass
fraction used for refinement
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An AMR framework

Numerical test: 3D viscous shock-bubble interaction (cont.)

• Conservative multi-component Navier-Stokes equations for ideal fluid mixture are solved:

ˆflYi

ˆt
+ Ò · (fluYi) + Ò · Ji = 0

ˆflu

ˆt
+ Ò · (fluu + p” ≠ · ) = 0

ˆE

ˆt
+ Ò · [(E + p) u] ≠ Ò · (· · u ≠ qc ≠ qd) = 0

where fl, u, p and E are the density, velocity vector, pressure and total energy of the fluid
mixture respectively. Yi is the mass fraction of species i = 1, 2, ..., N , with N the total
number of species.

• Ji is di�usive mass flux for each species. · , qc and qd are viscous stress tensor,
conductive heat flux and inter-species di�usional enthalpy flux respectively of the mixture.

• Sixth order finite di�erences for viscous and di�usive fluxes
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An AMR framework

Numerical test: 3D viscous shock-bubble interaction (cont.)
• Density fields in xy plane at z = 0 of AMR simulation with grid C:

(a) t = 2.8 µs (b) t = 8.8 µs

(c) t = 17.6 µs
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An AMR framework

Numerical test: 3D viscous shock-bubble interaction (cont.)
• Refined regions (green: level 1; red: level 2):

(a) t = 2.8 µs (b) t = 8.8 µs

(c) t = 17.6 µs
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An AMR framework

Numerical test: 3D viscous shock-bubble interaction (cont.)
3D visualization of mass fraction with grid C at end of simulation t = 17.6 µs
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An AMR framework

Numerical test: 3D viscous shock-bubble interaction (cont.)

• ymax is y coordinate of the
upper point with SF6
concentration equals
0.01 max(YSF6)

lx = xd ≠ xu

lyz = ymax + zmax

• All statistical quantities of
interests are grid converged

(a) Centroid (b) lx/ly

(c) Circulation (d) Integrated scalar
dissipation rate
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An AMR framework

Summary

• AMR framework developed for multi-species CFD applications
• Physics-based sensors such as gradient and multiresolution sensors implemented to detect

features for refinement
• Framework successfully tested with simulations21 that consist of interactions between

shocks, material interfaces, and vortices
• The sensors for mesh refinement can successfully identify:

¶ Shock wave and acoustic waves
¶ Vortical feautes
¶ Mixing regions

21One more 2D viscous shock-cylinder interaction problem is presented in thesis
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N.-S. simulations of RM instability

Outline

1. A localized dissipation nonlinear scheme for shock- and interface-capturing in compressible flows

2. An adaptive mesh refinement framework for multi-species simulations with shock-capturing capability

3. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock

4. Budget of turbulent mass flux and its closure for Richtmyer-Meshkov instability
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N.-S. simulations of RM instability

Problem setup
• Compressible 2D and 3D multi-species Navier-Stokes simulations set up to study

shock-induced mixing between SF6 and air due to RM instability:

shocked SF6

unshocked air

30 cm

2:5 cm

unshocked

2:5 cm

x

y

z

SF6

(a) 3D configuration (b) Space-time (x-t) diagram• Mas = 1.45
• At = flSF6 ≠ flair

flSF6 + flair
= 0.68

• 2D domain is cross-section of the 3D domain
• Mixing region shocked twice (first shock and re-shock)
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N.-S. simulations of RM instability

Perturbations

Perturbation modes seeded on the interfaces:
• 2D:

S(y) = A
ÿ

m

cos
A

2fim

Ly
y + „m

B

• 3D:

S(y, z) = A
ÿ

m

cos
A

2fim

Lyz
y + „m

B

cos
A

2fim

Lyz
z + Âm

B

• 11 modes in total: 0.833 mm Æ ⁄m Æ 1.25 mm
• A = 0.0141 mm

• Estimated with impulsive theory, 2D and 3D problems
have same:

¶ linear growth rates ÷̇imp

¶ time scales ·c

initial conditions
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N.-S. simulations of RM instability

Configurations of 2D and 3D adaptive mesh refinement (AMR) simulations

• Simulated with the AMR solver (HAMeRS)
• Sixth order WCNS-LD for convective flux
• Sixth order finite di�erences for di�usive and viscous fluxes
• Three levels of adaptive meshes (two levels of AMR)
• Gradient and multiresolution sensors; also sensor on mass fraction field
• Grid resolutions used for convergence test:

2D Grid Base Grid Resolution Refinement Ratio Finest Grid Spacing (mm)
D 2560 ◊ 128 1:2, 1:4 0.0244
E 5120 ◊ 256 1:2, 1:4 0.0122
F 10240 ◊ 512 1:2, 1:4 0.0061
G 20480 ◊ 1024 1:2, 1:4 0.0031

3D Base Grid Refinement Finest Grid Maximum Weighted
Grid Resolution Ratio Grid Spacing (mm) Number of Cells
B 640 ◊ 32 ◊ 32 1:2, 1:4 0.0977 30M
C 1280 ◊ 64 ◊ 64 1:2, 1:4 0.0488 144M
D 2560 ◊ 128 ◊ 128 1:2, 1:4 0.0244 778M

• ≥34 points across smallest initial wavelength for grid D
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N.-S. simulations of RM instability

Visualizations of mole fraction (3D, grid D)

(a) t = 0.05 ms (after first shock) (b) t = 0.40 ms (c) t = 1.10 ms (before re-shock)

(d) t = 1.20 ms (after re-shock) (e) t = 1.40 ms (f) t = 1.75 ms
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N.-S. simulations of RM instability

2D grid convergence study (over 24 realizations)
Mixing width W =

⁄
4X̄SF6 (1 ≠ X̄SF6 )dx; Mixedness � =

s
XSF6 (1 ≠ XSF6 )dxs
X̄SF6 (1 ≠ X̄SF6 )dx

; TKE =
1
2

fluÕÕ
i uÕÕ

i

(a) Mixing width (b) Mixedness (c) TKE (integrated)

(d) Scalar dissipation rate
(integrated)

(e) Enstrophy (integrated)
Man Long Wong AMS Seminar Jun 6th, 2019 37 / 62



N.-S. simulations of RM instability

3D grid convergence study
Mixing width W =

⁄
4X̄SF6 (1 ≠ X̄SF6 )dx; Mixedness � =

s
XSF6 (1 ≠ XSF6 )dxs
X̄SF6 (1 ≠ X̄SF6 )dx

; TKE =
1
2

fluÕÕ
i uÕÕ

i

(a) Mixing width (b) Mixedness (c) TKE (integrated)

(d) Scalar dissipation rate
(integrated)

(e) Enstrophy (integrated)
Man Long Wong AMS Seminar Jun 6th, 2019 38 / 62



N.-S. simulations of RM instability

Mole fraction fields tú = t/·c

(a) tú = 7.5 (t = 0.40 ms) (b) tú = 20.7 (t = 1.10 ms) (c) tú = 22.6 (t = 1.20 ms) (d) tú = 32.9 (t = 1.75 ms)

2D, grid G

(a) tú = 7.5 (t = 0.40 ms) (b) tú = 20.7 (t = 1.10 ms) (c) tú = 22.6 (t = 1.20 ms) (d) tú = 32.9 (t = 1.75 ms)

3D, grid D
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N.-S. simulations of RM instability

Reduced Reynolds number 3D simulations

• Reynolds number ReW is reduced by increasing physical transport coe�cients (TC’s) by
factors of 2 & 4 (µ, µv, D, and Ÿ). This is as same as cases with reduced ReW , while Sc
and Pr unchanged.

ReW = fl̄urmsW

µ̄
, where urms =

Ò
uÕÕ

i uÕÕ
i /3

• È·Í is additional averaging in central part of mixing layer: 4X̄SF6(1 ≠ X̄SF6) > 0.9
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N.-S. simulations of RM instability

Mole fraction fields

(a) tú = 7.5 (t = 0.40 ms) (b) tú = 20.7 (t = 1.10 ms) (c) tú = 22.6 (t = 1.20 ms) (d) tú = 32.9 (t = 1.75 ms)

Physical transport coe�cients, grid D

(a) tú = 7.5 (t = 0.40 ms) (b) tú = 20.7 (t = 1.10 ms) (c) tú = 22.6 (t = 1.20 ms) (d) tú = 32.9 (t = 1.75 ms)

4◊ physical transport coe�cients, grid D
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N.-S. simulations of RM instability

Flow compressibility and e�ective Atwood number
• Turbulent Mach number Mat and e�ective Atwood number Ate:

Mat =
Ô

3urms

c̄
, Ate =

Ò
flÕ2

fl̄

• Flows are weakly compressible
• Ate ¥ 0 due to initially di�use interface, but flows become non-Boussinesq (Ate > 0.05)

as the interfaces become sharper after first shock and re-shock
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N.-S. simulations of RM instability

Mixing: mixing width
• The mixing width is normalized by ÷̇imp and ·c: W ú = W ≠ W |t=0

÷̇imp·c

• With physical TC’s, W ú of 2D
case grows at a faster rate
compared to that of 3D case
after first shock initially but
growth rates are similar at late
times

• After re-shock, the 2D mixing
width grows at a much faster
rate

• 3D case with reduced Reynolds
number has slower growth rate
in mixing width before re-shock
but growth rates are similar after
re-shock
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N.-S. simulations of RM instability

Mixing: mixedness

• The mixedness is defined as:

� =
s

XSF6 (1 ≠ XSF6)dx
s

X̄SF6

1
1 ≠ X̄SF6

2
dx

• Mixedness quantifies the amount
of fluids molecularly mixed
within the mixing region

• The 2D and 3D mixednes values
are converging to 0.7 and 0.8
respectively [0.85 for 3D RMI
from Tritschler et al.22, 0.8 for
3D RMI from Mohaghar et al.23]

22Tritschler et al., “On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface”.
23Mohaghar et al., “Evaluation of turbulent mixing transition in a shock-driven variable-density flow”.

Man Long Wong AMS Seminar Jun 6th, 2019 44 / 62



N.-S. simulations of RM instability

Mixing: mole fraction profiles

(a) After first shock, before reshock, 3D (b) After reshock, 3D

• The normalized position is defined as: xú = x ≠ xi

W (t)
• Asymmetric, spikes penetrate more than bubbles
• Profiles collapse quite well at late times, similar to planar Rayleigh-Taylor instability24

24Daniel Livescu et al. “High-Reynolds number Rayleigh–Taylor turbulence”. In: Journal of Turbulence 10 (2009), N13.
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N.-S. simulations of RM instability

Mixing: mole fraction variance profiles

• � =
s

XSF6 (1 ≠ XSF6)dx
s

X̄SF6

1
1 ≠ X̄SF6

2
dx

= 1 ≠ 4
⁄

X Õ2
SF6dxú

(a) After first shock, before reshock, 3D (b) After reshock, 3D

• Fluids harder to mix in the heavier fluid side indicated by larger variance
• Approaching self-similarity near end of simulations
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N.-S. simulations of RM instability

TKE time evolution

• TKE is defined as:

TKE = 1
2fluÕÕ

i uÕÕ
i

• TKE decays at faster rate for 3D
problem compared to 2D

• Among 3D cases, TKE decays at
faster rate before re-shock for
case with smaller Reynolds
number

• After re-shock, all 3D cases have
similar TKE decay rates
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N.-S. simulations of RM instability

Turbulent kinetic energy (TKE) profiles

• The TKE is normalized as: TKEú = (TKE) W
s

TKE dx

(a) After first shock, before reshock, 3D (b) After reshock, 3D

• Peak of TKE is biased towards the lighter fluid side, especially before re-shock
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N.-S. simulations of RM instability

Anisotropy
• The Reynolds stress anisotropy tensor bij for 2D and 3D flows defined as:

b2D
ij = R̃ij

R̃kk
≠ 1

2”ij , b3D
ij = R̃ij

R̃kk
≠ 1

3”ij , where R̃ij =
fluÕÕ

i uÕÕ
j

fl̄

• 2D Reynolds normal stresses
becoming isotropic at a faster
rate than 3D stresses before
re-shock

• After re-shock, 2D Reynolds
normal stresses become isotropic
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N.-S. simulations of RM instability

Summary
• 2D and 3D RMI have very di�erent time evolution for mixing width and TKE and final

mixedness values
• Reynolds stresses of 2D flow approaching isotropy quickly after both shocks; Reynolds

stresses of 3D flows remain anisotropic at the of simulations
• Fluids are more di�cult to mix in 2D configuration

• Reducing ReW has significant e�ect before re-shock:
¶ smaller growth rate of W
¶ larger �
¶ larger decay rate of TKE

• Reynolds number has much smaller e�ect on the growth of mixing width/decay of TKE
after re-shock

More analysis on probability density functions and spectra can be found in manuscript submitted to
Physical Review Fluids25

25Man Long Wong, Daniel Livescu, and Sanjiva K. Lele. “High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock”. In: arXiv

preprint arXiv:1812.01785 (2018).
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Turbulent mass flux for RM instability

Outline

1. A localized dissipation nonlinear scheme for shock- and interface-capturing in compressible flows

2. An adaptive mesh refinement framework for multi-species simulations with shock-capturing capability

3. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock

4. Budget of turbulent mass flux and its closure for Richtmyer-Meshkov instability
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Turbulent mass flux for RM instability

Favre-averaged momentum equation

• Direct numerical simulation (DNS) or large eddy simulation (LES) still very expensive
• Reynolds-averaged / Favre-averaged Navier-Stokes (RANS/FANS) simulation with

turbulence modeling is an interim tool
• Most turbulent mixing models only tested with experimental results for RM turbulence
• High-fidelity simulation data also important for model validation
• Favre-averaged momentum equation (̃· = fl(·)/fl̄):

ˆ (fl̄ũi)
ˆt

+ ˆ (fl̄ũkũi)
ˆxk

= ≠ˆ (p̄”ki)
ˆxk

+ ˆ·̄ki

ˆxk
≠

ˆ
1
fl̄R̃ki

2

ˆxk

• R̃ij = fluÕÕ
i uÕÕ

j /fl̄: Favre-averaged Reynolds stress
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Turbulent mass flux for RM instability

Reynolds stress
• Algebaric closure model based on turbulent kinetic energy is not good:

R̃ij ¥ 2
3k”ij ≠ 2CµS

Ô
kS̃ij , S̃ij = 1

2

A
ˆũi

ˆxj
+ ˆũj

ˆxi

B

≠ 1
3

ˆũk

ˆxk
”ij ,

(a) t = 1.20 ms (b) t = 1.75 ms
• To improve, transport equation of R̃ij is considered:

ˆfl̄R̃ij

ˆt¸ ˚˙ ˝
ROC

+
ˆ

!
fl̄ũkR̃ij

"

ˆxk¸ ˚˙ ˝
convection

= ai

3
ˆp̄

ˆxj
≠ ·̄jk

ˆxk

4
+ aj

3
ˆp̄

ˆxi
≠ ˆ·̄ik

ˆxk

4
≠ fl̄R̃ik

ˆũj

ˆxk
≠ fl̄R̃jk

ˆũi

ˆxk¸ ˚˙ ˝
production

+ turbulent transport (unclosed) + pressure strain redistribution (unclosed) + dissipation (unclosed)
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Turbulent mass flux for RM instability

Turbulent mass flux and density-specific-volume covariance
• ai = flÕuÕ

i/fl̄: velocity associated with turbulent mass flux
• To close fl̄ai, BHR model by Besnard et al.26 suggests to model transport of fl̄ai:

ˆ (fl̄ai)
ˆt¸ ˚˙ ˝

ROC

+ˆ (fl̄ũkai)
ˆxk¸ ˚˙ ˝

convection

= b

3
ˆp̄

ˆxi
≠ ˆ·̄ki

ˆxk

4
≠ R̃ik

ˆfl̄

ˆxk¸ ˚˙ ˝
production

+ redistribution

+ turbulent transport (unclosed) + destruction (unclosed)

• b = ≠flÕ(1/fl)Õ: density-specific-volume covariance
• BHR-3 model by Schwarzkopf et al.27 recommends to model transport of fl̄b:

ˆfl̄b

ˆt¸˚˙˝
ROC

+ˆ (fl̄ũkb)
ˆxk¸ ˚˙ ˝

convection

= ≠2 (b + 1) ak
ˆfl̄

ˆxk¸ ˚˙ ˝
production

+ redistribution + turbulent transport (unclosed)

+ destruction (unclosed)
26Didier Besnard et al. Turbulence transport equations for variable-density turbulence and their relationship to two-field models. Tech. rep. Los Alamos

National Lab., NM (United States), 1992.
27John D Schwarzkopf et al. “Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids”. In: Journal of

Turbulence 12 (2011), N49.
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Turbulent mass flux for RM instability

Profiles of fl̄a1 (in moving frame of interface)

• Using highest Reynolds number 3D case in previous section
• x̃ = x ≠ xi, where xi is location of interface
• After both first shock and re-shock, fl̄a1 spreads and the peak decreases over time

(a) After first shock, before re-shock (b) After re-shock
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Turbulent mass flux for RM instability

Budget of turbulent mass flux, fl̄a1 (in moving frame of interface)

(a) t = 1.10 ms (before re-shock) (b) t = 1.20 ms (after re-shock) (c) t = 1.75 ms

• The production and destruction (unclosed) terms are dominant terms in the budget
• The net LHS (rate of change + convection) is negative in the middle part of mixing layer,

causing fl̄a1 to decrease in magnitude after first shock and re-shock
• Turbulent transport (unclosed) term spreads the profile
• Redistribution and convection terms are small over time
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Turbulent mass flux for RM instability

Budget of turbulent mass flux, fl̄a1
• Destruction consists of three unclosed components: fl̄(1/fl)ÕpÕ

,1, ≠fl̄(1/fl)Õ· Õ
1i,i

,

fl̄‘a1 = ≠fl̄uÕ
i

ˆuÕ
k

ˆxk

• fl̄(1/fl)ÕpÕ
,1 is the only important term after re-shock

(a) t = 0.40 ms (b) t = 1.10 ms
(before re-shock)

(c) t = 1.20 ms (after
re-shock)

(d) t = 1.75 ms
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Turbulent mass flux for RM instability

Assessment of BHR-329 model: unclosed terms of transport equation of
fl̄a1

• Turbulent mass flux, fl̄a1:
Unclosed Term Exact Form Modeled Form 28

Turbulent transport ≠fl̄
ˆ

1
flÕuÕuÕ/fl̄

2

ˆx
2Cafl̄

ˆ
Ë1

SR̃11/
Ô

k
2

a1,1
È

ˆx

Destruction fl̄
31

fl

4Õ ˆpÕ

ˆx
≠Ca1fl̄

Ô
k

S
a1

• Ca amd Ca1 are model coe�cients; S is a turbulent length scale
• Assuming S uniform inside mixing region (ignoring S), cancelling common terms and

operators for analyzing validity of model after re-shock (after mixing transition has
occurred)

28k = R̃ii/2 is turbulent kinetic energy per unit mass
29Schwarzkopf et al., “Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids”.
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Turbulent mass flux for RM instability

BHR-3 assessment: unclosed terms of fl̄a1 transport equation (after
re-shock)

• Turbulent transport:

(a) t = 1.20 ms (b) t = 1.75 ms
• Destruction:

(a) t = 1.20 ms (b) t = 1.75 ms
• Profiles of exact and modeled terms are similarMan Long Wong AMS Seminar Jun 6th, 2019 59 / 62



Turbulent mass flux for RM instability

BHR-3 assessment: turbulent length scales S (after re-shock)
• W : integral mixing width
• Least square fit within mixing region to estimate S’s required for turbulent transport

and destruction terms of fl̄a1
• Two length scale turbulence model BHR3.1 [Schwarzkopf et al., 2015] seems unnecessary

for a1
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Turbulent mass flux for RM instability

Summary

• fl̄ai plays an important role for modeling of R̃ij in BHR-3 model
• fl̄a1 transport equation was analyzed
• Destruction term in budget of fl̄a1 has di�erent composition before and after re-shock

(after mixing transition)
• BHR-3 model captures shapes of unclosed terms of fl̄a1 transport equation well
• S’s required for modeling unclosed terms of fl̄a1 transport equation dependent on each

other

Analysis of budgets and closures for R̃ij and b discussed in thesis
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Turbulent mass flux for RM instability

Conclusions

• High-resolution and localized dissipation schemes improved for shock problems that
involve flow instabilities and turbulence

• AMR framework was developed and shown to be robust for problems that involve shocks
and multi-species

• Asymmetric variable-density mixing e�ects examined
• Reynolds number has large e�ect on the flows before re-shock (before mixing transition)
• The BHR-3 model has good modeling assumptions for the fl̄a1 transport equation for

post-transition flows
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Questions?
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